Energy and Resource Allocation:  
A Dynamic Model of the  
"Dutch Disease"  

MICHAEL BRUNO  
Hebrew University and NBER  
and  
JEFFREY SACHS  
Harvard University and NBER  

It is well known that a domestic resource discovery gives rise to wealth effects that cause a squeeze of the tradeable good sector of an open economy. The decline of the manufacturing sector following an energy discovery has been termed the "Dutch disease", and has been investigated in many recent studies. Our model extends the principally static analyses to date by allowing for: (1) short-run capital specificity and long-run capital mobility; (2) international capital flows; and (3) far-sighted intertemporal optimizing behaviour by households and firms. The model is solved by numerical simulation.

The rise in energy prices in the 1970s caused a significant increase in national wealth in oil-exporting economies. Similar windfalls occurred in economies that enjoyed major resource discoveries. The wealth increases following higher oil prices or resource discoveries have a systematic impact on the sectoral allocation of resources. Booming demand, caused by higher wealth, leads to a shift of an economy's productive resources from tradeable-goods sectors to non-tradeable goods sectors. The squeeze of the tradeables sector in this context has become known as the "Dutch disease", and has been the subject of many recent studies, (e.g. Bruno (1982); Buitler and Purvis (1982); Corden and Neary (1980); Forsyth and Kay (1980); and Neary and Purvis (1981)). It is also the subject of a lively policy debate in the U.K.

The analyses of the Dutch disease to date have been incomplete in a number of respects. Most models of the Dutch disease have been static, though the effects of higher wealth on the traded and non-traded goods sectors are inherently dynamic. In our view, a complete theoretical model should allow for: (1) short-run capital specificity, and long-run capital mobility between sectors; (2) capital accumulation in the aggregate; (3) international capital mobility; and (4) far-sighted behaviour by firms and households (in their investment, consumption and savings decisions). Bruno (1982) provides for these factors in a two-period analytical model, and this paper complements that analysis by extending it to the infinite-horizon case. This extension allows for a quantitative assessment of the adjustment path of the economy. This substantial benefit comes at some cost: the model is no longer analytically tractable and must be solved by numerical algorithm, as we describe below.

The model employed here is a direct extension of the framework described by us elsewhere in this volume. In addition to exogenous energy production, firms in the traded and non-traded goods sectors produce output according to two-level CES production functions, combining value-added with intermediate inputs. Capital is assumed to
be costly to adjust, so that determinate investment demand equations may be derived.
We choose the case in which the investment rate in each sector may be written as a
function of the sector’s “Tobin’s q” (the real price of equity in the sector). Households
behave according to a life-cycle consumption model. Domestic and foreign capital
markets are fully integrated, so that home assets must earn the world rate of return. At
this point there are no monetary assets in the model (the financial assets are equity
claims to capital and real bonds), so that monetary policy and exchange rate management
are not studied. Unemployment results only from real wage rigidities. The model is
solved as a perfect foresight, intertemporal equilibrium, in which various policies may
be analyzed without being subject to the “Lucas critique.”

While some aspects of our model are loosely calibrated to the U.K. economy, the
model is not equipped at this point to assess the role of the Dutch disease in recent U.K.
performance. Thus, we do not seek to add empirical estimates to the British policy
debate on this issue. For stimulating contributions to that debate, see Forsyth and Kay
(1980) for a view which attributes a large role to the Dutch disease, and Fleming (1981)
for an opposing view.

In the next section, the barebones of the “Dutch disease” are set forth, and some
of the dynamic issues are described. In Section 2, the full model is detailed, and many
of its properties are mentioned. Specific simulation exercises are set forth in the third
section, and possible extensions of this analysis are raised in the fourth and concluding
section.

I. INTRODUCTION TO THE DUTCH DISEASE

A rise in wealth, e.g. from a resource discovery, leads to a rise in demand for all normal
goods, including both traded and non-traded commodities. By assumption, the demand
for non-traded goods can only be satisfied domestically, while the demand for tradeables
can be satisfied by increased net imports. As demand rises for both types of goods, the
relative price of non-traded goods must increase to preserve home-market equilibrium.
Factors will be drawn into the non-traded goods sector and away from tradeables. Some
of the increased demand for non-tradeables will be satisfied by increased production,
and the rest will be eliminated by the rise in the relative price of non-tradeables. The
increased demand for tradeables will be met by increased imports, which more than
make up for the decline in their domestic production.

Figure 1 illustrates these effects in a simple run static framework, for the case of a
resource discovery. There are three sectors: energy (E), non-traded goods (N), and
tradeables other than energy (T). Capital is fixed within sectors, while labour is mobile
across sectors. Energy production requires no factor inputs. For illustrative purposes,
relaxed later, we can assume that all of the domestic energy is exported. Budget balance
requires (in the absence of savings, investment, and internation capital flows):

\[ P_TQ_T + P_NQ_N + P_EQ_E = P_TC_T + P_NC_N \]

where \( C \) denotes consumption by domestic residents and \( Q \) denotes domestic production.
Market clearing in the non-traded goods market requires \( Q_N = C_N \). We will denote the
relative price on \( N \) in terms of \( T \) as \( \eta_N (=P_N/P_T) \), and the relative price of \( E \) as \( \eta_E \)
\( (=P_E/P_T) \).

In an economy without oil (\( Q_E = 0 \), equilibrium would be at point A. A discovery
of oil in this simple model would shift the consumption possibility frontier vertically in
the amount \( \eta_EQ_E \). Non-traded good production rises, from \( Q_N^A \) to \( Q_N^B \), and the relative
price of non-traded goods, \( \eta_N \), rises (the slope at the point of tangency becomes steeper).
Production of tradeables falls absolutely (from \( Q_T^A \) to \( Q_T^B \)), while net imports of non-oil
tradeables rise from zero to \( C_N^B - Q_T^B \).
In general, such a static analysis is inadequate, since the shift from A to B will cause profitability on capital in the two sectors to diverge and to differ from the rate of return given on world capital markets. In the long run, these rates of return must equalize, so that a "long-run" analysis might proceed as in Figure 2. Now, we assume that physical capital (with relative price \( \pi_k \)) flows freely between sectors and from abroad so that the marginal value product of capital is always equal to \( r^* \pi_k \), where \( r^* \) is the fixed world rental rate. By standard results of the Heckschen–Ohlin–Samuelson model (assuming constant-returns-to-scale production technology in \( N \) and \( T \)), fixing \( r^* \pi_k \) also fixes the relative price of non-traded goods to traded goods, \( \pi_N \), and forces the economy to produce on a Rybczynski line (depicted \( RR \)), along which capital in both sectors earns the marginal value product \( r^* \pi_k \). In Figure 2, the \( RR \) line is drawn according to the assumption that the non-traded sector is capital intensive. The line \( C(\pi_N) \) in Figure 2 is a consumption-expansion path showing the consumption levels of \( C_S \) and \( C_T \) for various income levels, at the fixed relative price \( \pi_N \).

An economy without oil starts at equilibrium at point A. National income in tradeable units is given by the distance OB. An oil discovery, owned by domestic residents, raises GDP by the amount \( P_FQ_F \), which is given by BD in the figure. Consumption shifts to point F, at the intersection of \( C(\pi_N) \) and the new national budget line. By the assumption of perfect world capital mobility, the relative price \( \pi_N \) remains unchanged, unlike in the short-run model above. Since the new domestic consumption of non-tradeables \( C^F_N \) must be satisfied by domestic production of non-tradeables, production must lie on the \( RR \) line directly below the point F, at G in Figure 2. At this point, capital and labour inputs have increased absolutely in the \( N \)-sector and have decreased absolutely in the \( T \)-sector. The basic result of the "Dutch disease" analysis is again confirmed: the (non-oil) tradeable sector is compressed by the discovery of oil. But here, international capital mobility proceeds to the point where the relative price increase of non-traded goods is completely eliminated. Also, once again, net imports of the tradeable good rise sharply.

Figures 1 and 2 provide two faces of the adjustment process, but unfortunately we cannot simply concatenate these two figures to get a truly dynamic analysis. In general,
the impact effect of the oil discovery will be a shift in investment demands in the two sectors, which will disturb the equilibrium at point $B$ in Figure 1. More importantly, the economy will run current account imbalances as the adjustment proceeds, so that by the time that the long-run of Figure 2 is achieved, national income will have to be adjusted to take into account the economy's net foreign investment position. For example, national income may exceed the level $OD$ (say $OD'$) if the economy runs surpluses along the adjustment path, so that domestic production may occur at $H$ instead of $G$.

One strong motive for current account surpluses will arise if agents in the economy recognize that the oil is a depleting resource, so that current national income exceeds levels that can be expected in the future. Households may then save, and accumulate foreign assets, in order to maintain consumption levels after the oil is depleted. This is a topic to which we return.

Wealth effects similar to those of an energy discovery arise if the economy is a net energy exporter and $\pi_E$ increases. However, the analysis is made more difficult in this case if $E$ is not only exported but also used as an input to domestic production. In our other study in this volume we discuss the implications of a rise in $\pi_E$ for production where $E$ is an intermediate input. We simply note two facts here. First, the long-run value of $\pi_N$ is no longer simply a function of $r^* \pi_k$, but now also of $\pi_E$. In our model, the tradeable good sector is the more intensive user of $E$, so that long-run $\pi_N$ is a
decreasing function of $\pi_E$. Second, a change in $\pi_E$ not only affects capital accumulation through demand changes, but also through direct effects on profitability.

Now we turn to the full dynamic model which allows us to find multi-period equilibria in an economy with far-sighted agents.

2. THE SIMULATION MODEL

The complete simulation model is set forth in Table I. It is very similar in structure to the model in Sachs (1982), and detailed justifications of the behavioural relations may be found in that earlier paper. We will briefly outline the structure here, proceeding through the functional blocks of the model. The equation numbers that follow refer to Table I. A list of variables is provided at the end of the table. All variables are written in intensive form, per unit of the full-employment labor force, which grows at rate $n$.

(a) Production technology

The economy is divided into three sectors, including two final goods ($N$ and $T$) and energy ($E$). The final-good sectors produce according to two-level CES production functions, which combine value added with intermediate inputs. The intermediate inputs themselves involve a bundle of commodities, including energy, other imported raw materials $R$, and the output of the other final-good sector. Thus, there is a complete input–output structure for the economy. The production functions for the two final goods may be represented as:

$$Q_T = F_T^T[V_T(K_T, L_T), M_T(N_T, E_T, R_T)]$$  \hspace{1cm} (1)

$$Q_N = F_N^N[V_N(K_N, L_N), M_N(T_N, E_N, R_N)]$$  \hspace{1cm} (2)

The $V$ and $M$ functions are each CES, with substitution elasticities $\sigma_{1i}$ and $\sigma_{2i}$ respectively ($i = N, T$).

The energy sector is assumed not to use other productive inputs.

---

### TABLE I

The simulation model

<table>
<thead>
<tr>
<th>Production Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $Q_T^{p,T} = U_{VT}V_T^{p,T} + U_{MT}M_T^{p,T}$</td>
</tr>
<tr>
<td>(2) $Q_N^{p,N} = U_{VN}V_N^{p,N} + U_{MN}M_N^{p,N}$</td>
</tr>
<tr>
<td>(3) $Q_E = Q_E$</td>
</tr>
<tr>
<td>(4) $V_T^{p,T} = U_{LT}L_T^{p,T} + U_{KT}K_T^{p,T}$</td>
</tr>
<tr>
<td>(5) $V_N^{p,N} = U_{LN}L_N^{p,N} + U_{KN}K_N^{p,N}$</td>
</tr>
<tr>
<td>(6) $P_T^{p,T} = \beta_{VT}V_T^{p,T} + \beta_{MT}M_T^{p,T}$</td>
</tr>
<tr>
<td>(7) $P_N^{p,N} = \beta_{VN}V_N^{p,N} + \beta_{MN}M_N^{p,N}$</td>
</tr>
<tr>
<td>(8) $P_T(\partial V_T/\partial L_T) = \omega$</td>
</tr>
<tr>
<td>(9) $P_N(\partial V_N/\partial L_N) = \omega$</td>
</tr>
<tr>
<td>(10) $(\partial Q_T/\partial V_T)/(\partial Q_T/\partial M_T) = P_{VT}/P_{MT}$</td>
</tr>
<tr>
<td>(11) $(\partial Q_N/\partial V_N)/(\partial Q_N/\partial M_N) = P_{VN}/P_{MN}$</td>
</tr>
<tr>
<td>(12) $P_{MT}^{p,T} = \beta_{NT}P_N^{p,N} + \beta_{RT}P_T^{p,T} + \beta_{ET}P_E^{p,T}$</td>
</tr>
<tr>
<td>(13) $P_{MN}^{p,N} = \beta_{TN}P_T^{p,N} + \beta_{RN}P_N^{p,N} + \beta_{EN}P_E^{p,N}$</td>
</tr>
<tr>
<td>(14) $M_T^{p,T} = U_{NT}N_T^{p,N} + U_{RT}R_T^{p,T} + U_{ET}E_T^{p,T}$</td>
</tr>
<tr>
<td>(15) $M_N^{p,N} = U_{TN}T_N^{p,N} + U_{RN}R_N^{p,N} + U_{EN}E_N^{p,N}$</td>
</tr>
<tr>
<td>(16) $P_T(\partial M_T/\partial N_T) = P_N$</td>
</tr>
<tr>
<td>(17) $P_T(\partial M_T/\partial R_T) = P_R$</td>
</tr>
</tbody>
</table>
Table I (Cont.)

\( \frac{\partial M_{N}}{\partial T_{N}} = P_{T} \)

\( \frac{\partial M_{N}}{\partial R_{N}} = P_{R} \)

\( K_{T} = J_{T} - (d + n)K_{T} \)

\( \bar{K}_{N} = J_{N} - (d + n)K_{N} \)

\( J_{T} = K_{T} \cdot \left[ q_{T} - P_{T}T + P_{T} \phi(n + d)/2 \right]/(n + d) \)

\( J_{N} = K_{N} \cdot \left[ q_{N} - P_{N} + P_{N} \phi(n + d)/2 \right]/(n + d) \)

\( I_{T} = J_{T} \cdot P_{T} \cdot \left[ 1 + \phi/2 \cdot (J_{T}/K_{T} - d - n) \right] \)

\( I_{N} = J_{N} \cdot P_{N} \cdot \left[ 1 + \phi/2 \cdot (J_{N}/K_{N} - d - n) \right] \)

\( P_{T} = a_{1T}P_{T} + a_{2T}P_{N} + a_{3T}P_{F} + a_{4T}P_{E} \)

\( P_{N} = a_{1N}P_{T} + a_{2N}P_{N} + a_{3N}P_{F} + a_{4N}P_{E} \)

\[ F = q_{T}K_{T} + q_{N}K_{N} + W^{E} + Z \]

\[ A = \Omega(\delta - n)W + (1 - \Omega)(wL + Tr) \]

\[ (\partial C/\partial C_{T})/(\partial C/\partial C_{N}) = P_{T}/P_{N} \]

\[ (\partial C/\partial C_{F})/(\partial C/\partial C_{E}) = P_{F}/P_{N} \]

\[ (\partial C/\partial C_{E})/(\partial C/\partial C_{N}) = P_{E}/P_{N} \]

\[ C^{*} = U_{CT}CT^{*} + U_{CN}C_{N}^{*} + U_{CE}C_{E}^{*} + U_{CF}C_{F}^{*} \]

\[ P_{T}^{*} = \beta_{CT}P_{T} + \beta_{CN}P_{N} + \beta_{CE}P_{E} + \beta_{CF}P_{F} \]

\[ A = P_{T}C_{T} + P_{N}C_{N} + P_{E}C_{E} + P_{F}C_{F} \]

\[ W^{E} = \int_{0}^{\infty} P_{E}Q_{E}(1 - \tau_{E})e^{-\tau_{E}t}dt \]

\[ \frac{q_{T}}{q_{T}} = r^{*} - D_{v}/q_{T}K_{T} \]

\[ \frac{q_{N}}{q_{N}} = r^{*} - D_{v}/q_{N}K_{N} \]

\[ H/H = r^{*} - (w + Tr)/H - n \]

\[ \lim_{t \to \infty} e^{-r_{t}^{*}}q_{T} = 0 \]

\[ \lim_{t \to \infty} e^{-r_{t}^{*}}q_{N} = 0 \]

\[ \lim_{t \to \infty} e^{-r_{t}^{*}}H = 0 \]

\[ Q_{T} = C_{T} + [a_{1T}J_{T} + a_{1N}J_{N} + (I_{T}/P_{T} - J_{T})] + X_{T} + T_{N} \]

\[ Q_{N} = C_{N} + [a_{2T}J_{T} + a_{2N}J_{N} + (I_{N}/P_{N} - J_{N})] + N_{T} \]

\[ D_{v} = P_{V_{T}}V_{T} + q_{T}J_{T} - (d + n)K_{T} \]

\[ D_{v} = P_{V_{N}}V_{N} - wL + q_{N}J_{N} - (d + n)K_{N} \]

\[ L_{T} + L_{N} = \bar{L} \]

\[ \bar{W}/W = P_{C}/P_{C} + \rho \log [(L_{T} + L_{N})/\bar{L}] \]

\[ Z = (P_{T}V_{T} + P_{V_{N}}V_{N} + P_{E}Q_{E} + r^{*}Z) - (A + I_{T} + I_{N}) - nZ \]

\[ X_{T} = \zeta(P_{T}/P_{F})^{-r_{t}^{*}}W^{*} \]

\[ T_{R} = \tau_{E} \cdot P_{E}Q_{E} \]

\[ T_{R} = r^{*} \cdot W^{E} \cdot \tau_{E}/(1 - \tau_{E}) \]

Notes: 1. Variable and Parameter Definitions

\( A \) Total household absorption

\( C \) Instantaneous household utility

\( C_{E} \) Household consumption of energy

\( C_{F} \) Household consumption of foreign final goods
BRUNO & SACHS  DUTCH DISEASE  851

\( C_N \)  Household consumption of \( N \)
\( C_T \)  Household consumption of \( T \)
\( E_N \)  Energy input into \( N \)
\( E_T \)  Energy input into \( T \)
\( F \)  Financial wealth of households
\( H \)  Human wealth of households
\( I_T \)  Total investment expenditure in \( T \)
\( I_N \)  Total investment expenditure in \( N \)
\( J_T \)  Gross fixed capital formation in \( T \)
\( J_N \)  Gross fixed capital formation in \( N \)
\( K_T \)  Capital stock in \( T \)
\( K_N \)  Capital stock in \( N \)
\( L_T \)  Labour input in \( T \)
\( L_N \)  Labour input in \( N \)
\( M_T \)  Intermediate input bundle in \( T \)
\( M_N \)  Intermediate input bundle in \( N \)
\( N_T \)  Non-traded input into \( T \)
\( P_C \)  Consumer price index
\( P_E \)  Price of energy input
\( P_F \)  Price of foreign final good
\( P_N \)  Price of investment good in \( N \)
\( P_T \)  Price of investment good in \( T \)
\( P_{NT} \)  Price of non-traded good
\( P_R \)  Price of imported, non-energy raw material input
\( P_T \)  Price of tradable good
\( P_{VN} \)  Value-added deflator in \( N \)
\( P_{VT} \)  Value-added deflator in \( T \)
\( Q_E \)  Production of energy
\( Q_N \)  Production of traded good
\( q_N \)  Tobin's \( q \) in non-tradable sector
\( q_T \)  Tobin's \( q \) in tradable sector
\( r^* \)  World interest rate
\( R_T \)  Raw material (non-energy) input into \( T \)
\( R_N \)  Raw material (non-energy) input into \( N \)
\( T_N \)  Traded-good input in \( N \)
\( Tr \)  Transfer payments from government (net)
\( \tau_E \)  Tax rate on energy revenue
\( V_N \)  Value-added in \( N \)
\( V_T \)  Value-added in \( T \)
\( w \)  Nominal wage rate
\( W \)  Household sector wealth (for life-cycle households)
\( W^E \)  Wealth from energy production
\( W^* \)  World wealth
\( X_T \)  Exports of domestic traded-good
\( Z \)  Domestic holdings of foreign bonds

2. Other parameters
\( d \)  Rate of depreciation
\( n \)  Rate of population growth
\( \delta \)  Rate of time preference for life-cycle savers
\( \phi \)  Cost-of-adjustment parameter in investment functions
\( \Omega \)  Proportion of life-cycle households in total

3. At any moment, \( K_T, K_N \) and \( Z \) are predetermined. \( W^*, r^*, Q_E, P_E, P_R, P_{NT} \) and the parameter values of the model are exogenous. Thus, the 51 equations determine: \( Q_T, V_T, M_T, Q_N, M_N, Q_E, L_T, L_N, P_T, P_{VT}, P_N, P_{VN}, P_{MN}, N_T, R_N, E_T, T_N, R_N, E_N, J_T, J_N, I_T, I_N, K_T, K_N, q_T, q_N, P_{PT}, P_{PN}, W, H, F, W^E, A, C_T, C_N, C_{ET}, C_{NT}, C_P, C_P, q_T, q_N, H, Div_T, Div_N, Z, X_T, Tr, \) and \( w \) or \( \omega \) (depending on (48a) or (48b)). In the case of (48b), \( w_c (w/P_r) \) is predetermined. Note that current the values of \( H, q_T, Q_N \) are determined implicitly by the transversality conditions (41), (42), and (43).

4. Equation pairs (4), (6); (5), (7); (12), (14), (13), (15); (34), (35) are linked by duality relationships, as spelled out in our study Bruno and Sachs (1982). The parameters in these equations are therefore subject to cross-equation restrictions.

Indeed, in this model, the issue of time pattern of oil production and "optimal depletion policy" is ignored, as the cash flow from energy production is treated as exogenous.
The production functions (1) and (2) imply dual relationships linking the prices of the final outputs with the prices of the various inputs. As we described in Bruno and Sachs (1981), these relationships are also of the CES type, since the CES function is "self-dual". Thus, we have:

$$P_T = Q_T [P_{VT}, P_{MT}(P_N, P_E, P_R)]$$  \hspace{1cm} (6)

$$P_N = Q_N [P_{VN}, P_{MN}(P_T, P_E, P_R)].$$ \hspace{1cm} (7)

Note that these equations implicitly define the true value-added deflators $P_{VT}$ and $P_{VN}$ in terms of the other prices.

At any moment, the capital stocks in the final-good sectors are predetermined. Output supply functions conditional on $K_T$ and $K_N$ may then be derived, as was shown in detail in our other essay in this volume. Specifically, we impose the first-order conditions that $\delta V_l/\delta L_i = W_l/P_{vi}$, $\delta Q_l/\delta V_l = F_{vi}/P_i$, $\delta Q_l/\delta M_i = P_{Mi}/P_i$, $(i = T, N)$, etc., as in equations (8) to (11) in Table 1.

The optimal investment policy for the firm makes the rate of gross physical capital formation an increasing function of the sectoral Tobin’s $q$ (see Bruno and Sachs (1982)) for an extended discussion). For each sector, a unit of physical capital is a composite good, involving a fixed proportion of four commodities, so that $P_l$ is a weighted average of $P_N$, $P_T$, $P_E$, and $P_R$. The investment equations are shown in Table 1 as (22) and (23).

(b) Household sector

Households supply labour, hold asset portfolios, and make consumption choices among traded, non-traded, energy, and imported final goods. We assume that a portion $\Omega$ of all households are perfect life-cycle savers, optimizing consumption expenditure over an infinite horizon. The remaining proportion $(1 - \Omega)$ of households are myopic or credit-constrained, and these households merely consume their labour income, without accumulating or holding financial assets. This division in households is made in recognition of the empirical evidence on consumption expenditure that shows current consumption to be more closely tied to current income than is predicted by a pure life-cycle model. (See Hayashi (1982), and Hall and Mishkin (1982) for example).

For a given class of intertemporal utility functions, life-cycle households choose total consumption expenditure $p_C C$ as a fixed fraction $\delta$ of contemporaneous wealth: $p_C C = \delta W$. A rigorous justification for this equation may be found in Sachs (1982). Non-life cycle households simple spend $(w + Tr) L$, where $Tr$ are net per capita transfers from the government. Total private absorption is the sum of spending of these two groups:

$$A = \Omega \cdot \delta W + (1 - \Omega) \cdot (w + Tr) \cdot L.$$ \hspace{1cm} (30)

Once total spending is chosen, households divide expenditures among the variety of available goods, including $N$, $T$, $E$, and $F$ (the foreign final good). Thus, $A = P_E C_E + P_T C_T + P_N C_N + P_F C_F$, with the consumption levels selected to maximize an instantaneous CES utility function. The consumption equations are given in the model as (31) through (33).

Next, consider wealth $(W)$ held by the life-cycle households. This is comprised of human wealth and financial wealth. Human wealth is the discounted value of future labour income (inclusive of net transfers from the government) as implied by (40). Financial wealth is the sum of equity and bond holdings and oil wealth, where the latter is the post-tax discounted value of the future stream of oil revenues. (See (29) and (37) in Table I.)
(c) Market equilibrium conditions

There are three types of market equilibrium conditions: for assets, commodities and factor inputs. For assets, we assume that the foreign bond, and domestic equity claims to capital in the \( N \) and \( T \) sectors are all perfect substitutes, so that the ex ante expected yields must be identical. The foreign bond has a fixed instantaneous yield \( r^* \). The yield on domestic equity is the sum of the dividend yield \( \frac{\text{Div}_i}{q_iK_i} \) and capital gains \( \frac{\dot{q}_i}{q_i} \), so that

\[ r^* = \frac{\text{Div}_i}{q_iK_i} + \frac{\dot{q}_i}{q_i}, \quad i = T, N. \tag{38} \]

The expression for dividends is given in (46), and is based on the assumption of all-equity firms with no retained earnings (see Sachs (1982) for a more complete discussion).

There are market equilibrium conditions for the final goods sectors, that require:

\[ Q_T = C_T + C_T + [a_{1T}J_T + a_{1N}J_N + (I_T/P_{TT})] + X_T + T_N \tag{44} \]

\[ Q_N = C_N + G_N + [a_{2N}J_N + (I_N/P_{IN} - J_N)] + N_T. \tag{45} \]

The bracketed expressions represent the inputs of each sector into investment demand. Note that one element of final demand for the tradeable commodity is export demand \( X_T \) (which is of course not present in the non-traded sector). \( X_T \) is written as a function of exogenous foreign wealth \( W^* \), and the relative price of the foreign final good:

\[ X_T = \zeta (P_T/P_F)^{-\rho} W^*. \tag{50} \]

We do not need market clearing equations for energy, raw materials, or the foreign final good, since we assume that these commodities are in perfectly elastic supply on the world market.

The model is solved under two alternative assumptions for the labour market, either (a) full employment, with flexible real wages; or (b) less-than-full-employment, with sluggish real wage adjustment as a function of the rate of unemployment. Under assumption (a)

\[ \bar{L} = L_T + L_N \tag{48a} \]

and under (b)

\[ \bar{W}/W - \dot{P}_C/P_C = \rho \log [(L_T + L_N)/\bar{L}] \tag{48b} \]

Finally, there are the balance of payment accounting relationships, according to which the accumulation of foreign bonds by domestic residents equals the current account surplus: \( \dot{Z} = CA, \) The current account is given as the difference of national income and national absorption, in (49).

3. SIMULATION RESULTS

The model parameters used in the simulations (Table II) are “guesstimates” rather than econometric estimates. Mr. Louis Dicks-Mireaux of Harvard University is now engaged in a careful econometric specification of the model. Thus, the estimates here are meant to provide a plausible order of magnitude for various effects, rather than precise measures.

To choose parameters for the production block of the model, the 1973 input-output table of the United Kingdom was used as a benchmark for factor shares. The elasticity of substitution between \( V_i \) and \( M_i \), and between \( K_i \) and \( L_i \), is set at 0·8. The value is probably too high for short-run substitutability, but perhaps more acceptable for the intermediate-run analysis carried out here. The elasticity of substitution among the components of \( M_i \) is set at 0·5. The remaining parameters of the production function are then selected to yield the 1973 factor shares as shown in the input-output table.
TABLE II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_{1T}, \rho_{1N}$</td>
<td>-0.3</td>
</tr>
<tr>
<td>$\rho_{2T}, \rho_{2N}$</td>
<td>-0.25</td>
</tr>
<tr>
<td>$\rho_{3T}, \rho_{3N}$</td>
<td>0.2</td>
</tr>
<tr>
<td>$\rho_{4T}, \rho_{4N}$</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho_{5T}, \rho_{5N}$</td>
<td>-0.25</td>
</tr>
<tr>
<td>$d$</td>
<td>0</td>
</tr>
<tr>
<td>$n$</td>
<td>0.02</td>
</tr>
<tr>
<td>$\phi$</td>
<td>10</td>
</tr>
<tr>
<td>$\delta$</td>
<td>0.02</td>
</tr>
<tr>
<td>$\tau^*$</td>
<td>0.04</td>
</tr>
<tr>
<td>$\Omega$</td>
<td>0.5</td>
</tr>
<tr>
<td>$\rho$</td>
<td>-0.5</td>
</tr>
<tr>
<td>$\sigma_F$</td>
<td>1.25</td>
</tr>
<tr>
<td>$\tau_E$</td>
<td>0.9</td>
</tr>
<tr>
<td>$\bar{U}_{VT}$</td>
<td>0.43</td>
</tr>
<tr>
<td>$\bar{U}_{MT}$</td>
<td>0.41</td>
</tr>
<tr>
<td>$\bar{U}_{VN}$</td>
<td>0.68</td>
</tr>
<tr>
<td>$\bar{U}_{MN}$</td>
<td>0.16</td>
</tr>
<tr>
<td>$\bar{U}_{LT}$</td>
<td>0.11</td>
</tr>
<tr>
<td>$\bar{U}_{KT}$</td>
<td>0.02</td>
</tr>
<tr>
<td>$\bar{U}_{LN}$</td>
<td>0.05</td>
</tr>
<tr>
<td>$\bar{U}_{NT}$</td>
<td>2.5</td>
</tr>
<tr>
<td>$\bar{U}_{RT}$</td>
<td>1.6</td>
</tr>
<tr>
<td>$\bar{U}_{ET}$</td>
<td>0.09</td>
</tr>
<tr>
<td>$\bar{U}_{TN}$</td>
<td>0.41</td>
</tr>
<tr>
<td>$\bar{U}_{RN}$</td>
<td>0.07</td>
</tr>
<tr>
<td>$\bar{U}_{EN}$</td>
<td>0.79</td>
</tr>
<tr>
<td>$a_{1T}$</td>
<td>0.3</td>
</tr>
<tr>
<td>$a_{2T}$</td>
<td>0.6</td>
</tr>
<tr>
<td>$a_{4T}$</td>
<td>0.014</td>
</tr>
<tr>
<td>$a_{3N}$</td>
<td>0.3</td>
</tr>
<tr>
<td>$a_{2N}$</td>
<td>0.6</td>
</tr>
<tr>
<td>$\beta_{CT}$</td>
<td>0.333</td>
</tr>
<tr>
<td>$\beta_{CN}$</td>
<td>0.486</td>
</tr>
<tr>
<td>$\beta_{CE}$</td>
<td>0.059</td>
</tr>
<tr>
<td>$\beta_{CF}$</td>
<td>0.132</td>
</tr>
</tbody>
</table>

The procedure yielded the following production relations:

\[
Q_T = [0.43 V_T^{-0.25} + 0.41 M_T^{-0.25}]^{-4}
\]

\[
Q_N = [0.68 V_N^{-0.25} + 0.19 M_N^{-0.25}]^{-4}
\]

\[
V_T = [0.72 L_T^{-0.25} + 0.16 K_T^{-0.25}]^{-4}\quad (0.62)
\]

\[
V_N = [0.52 L_N^{-0.25} + 0.26 K_N^{-0.25}]^{-4}\quad (0.55)
\]

\[
M_T = [2.5 N_T^{-1} + 0.09 E_T^{-1} + 11.65 R_T^{-1}]^{-1}
\]

\[
M_N = [0.41 T_N^{-1} + 0.07 E_N^{-1} + 0.79 R_N^{-1}]^{-1}
\]

Three simulation exercises were undertaken to illuminate the links of North Sea oil to the rest of the U.K. economy. First, we consider alternative budgetary methods of redistributing the proceeds of oil revenue taxes to the public, under the assumption of continuous full employment.

Second, we analyse the effects of a rise in energy prices, under the contrasting assumptions of flexible and fixed real wages. Third, we study the dynamic responses to a domestic oil discovery, again assuming full employment conditions. It is important to stress that the simulation results provide qualitative rather than quantitative measures of the effects of the various disturbances, since the model is only loosely calibrated to the U.K. economy.

All results are stated as percentage deviations from a base case, in which the economy is on an equilibrium growth trajectory. In the base case, the economy is characterized by a declining stream of domestic energy production, very similar to that assumed by Forsyth and Kay (1980). For the first 15 years, domestic energy production exceeds energy consumption by about ten percent; energy production then falls by 50% for the following 15 years, and falls again by half (to 25% of original production) for the remaining horizon of the economy. With an assumed world real interest rate of four percent, these assumptions make the country a net energy importer in present value terms (but presumably much less of one than the U.K.'s competitors).
Simulation 1: Budget policy and oil revenues

Under current projections, over 80% of North Sea oil earnings will be collected in taxes in the next decade. An important issue of public policy is how to manage the government budget in light of the oil revenues, both in terms of expenditure and debt policy. In this first exercise, we focus on debt management for a given trajectory of expenditure on goods and services.

Increased revenue from oil taxes can be used to reduce public debt (or equivalently, accumulate official reserves) or to make increased transfer payments to the private sector. As is well known, this choice is irrelevant under assumptions of perfect foresight, competitive capital markets, and infinitely-lived households (i.e. households with an operative bequest motive between generations). However, for finite-lived or capital-constrained households, the budget decision has an important bearing on the intertemporal distribution of consumption expenditure, and thus on prices, output, and capital accumulation as well. As described earlier, \( (1-\Omega) \) percent of the households in this model are "capital constrained", so that the budget choices will affect the growth path of the economy. In the simulations we set \( \Omega \) equal to 0.5.

As a simple illustration, consider two alternative policies. In the base case, the government simply returns current tax revenue in transfers according to (51a) in Table 1 (we label this the "current-transfer" policy); in the second case, the government pays out in each period the constant, perpetuity-equivalent of its oil revenues according to (51b) (we label this the "constant-transfer" policy). Since oil revenues decline over time with the diminution of production, the current transfer is initially greater, and then later less, than the perpetuity-equivalent transfer. In the constant-transfer case, the government initially runs a budget surplus to build up reserves, the income of which is then used to sustain transfers after oil production subsides.

In sum, a switch from a current to a constant transfer policy shifts consumption to a later date, and smooths the intertemporal path of consumption expenditure and presumably the intertemporal distribution of utility across generations. In terms of the equilibrium in Figure 2, production is farther out along the \( R^R \) line in equilibrium (e.g. at point \( H \) rather than \( G \)), so that there is greater non-tradeable production and less tradeable sector production than under a current-transfer regime. The analogy to Figure 2 is close but not perfect, though, since in the simulation model, \( P_N/P_T (\pi_N) \) may change slightly in equilibrium, and the relative price of domestic tradeable to foreign tradeable final goods, \( P_T/P_F \), may also vary. (The movement of \( \pi_N \) apparently results from the fact that the real price of investment goods \( P_N/P_T \) and \( P_T/P_T \) vary in the long run.)

The specific quantitative results of the policy shift are shown in Table III. Under the constant-transfer policy, consumption and the terms of trade \( P_T/P_F \) are reduced in the early years, as is the relative price of non-traded goods to traded goods \( P_N/P_T \).

| TABLE III |
| Effects of a shift to a constant-transfer policy |
|---|---|---|---|
|  | 1980 | 1985 | 1990 | Steady-state |
| \( K_T \) | 0.0 | 0.2 | 0.4 | -0.3 |
| \( K_N \) | 0.0 | 0.0 | 0.2 | 0.6 |
| \( P_T/P_F \) | -0.6 | -0.5 | 0.2 | 0.3 |
| \( P_N/P_T \) | -0.6 | -0.2 | -0.2 | 0.2 |
| \( Q_T/L_T \) | -0.2 | -0.2 | -0.1 | 0.1 |
| \( Q_N/L_N \) | 0.0 | 0.0 | 0.0 | 0.1 |
| \( W/GPL \) | -0.2 | -0.2 | -0.2 | 0.2 |

Note: All variables are measured by their percentage change over base-case values, where in the base case all oil tax revenues are redistributed in the period of their collection.
Pecause of the terms-of-trade effect, real wages fall by 0.2%. Since $P_N/P_T$ falls, production in the traded goods sector is stimulated, and $K_T$ is higher in the short run, relative to the current-transfer case. Over time, the consumption expenditure in the constant-transfer policy rises relative to consumption in the base case, so that short-run effects are essentially reversed in the long-run. By sustaining consumption in the long-run, the constant-transfer policy results in higher steady-state $P_T/P_F$ and $P_N/P_T$. The higher long-run consumption level means a larger non-traded goods sector, and a reduced traded-goods sector. Thus, $K_N$ is 0.6% higher in equilibrium and $K_T$ is 0.3% lower than under the current transfer policy.

**Simulation 2: A 5% increase in world energy prices**

Next, we study a small increase in the world price of energy, first under the assumption of continuous full-employment, and then with sluggishness in real wages. We assume a constant-transfer policy for government revenues. The specific shock is a permanent, unanticipated, one-shot rise in the world energy price of 5% in 1980. The effects are shown in Table IV. Details for a single sector's adjustment to higher $P_E$ may be found in our other study in this volume.

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>1985</th>
<th>1990</th>
<th>Steady-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_T$</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>$K_N$</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>$P_T/P_F$</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>$P_N/P_T$</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>$Q_N/L_N$</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>$W/CPI$</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

*Note: All variables are measured by their percentage change over base-case values. For this set of simulations, the government pursues a constant-transfer policy.*

The novel effect here is the differential behaviour of the final goods sectors, which results from the higher energy-intensity of production in traded goods (again, see Bruno (1982) for details). When energy prices rise, full employment requires a 0.4% drop in real wages, as shown in Table IV. Substitution away from energy inputs reduces labour productivity in the tradeable sector. $Q_N/L_N$ is also reduced as labour shifts from the traded to the non-traded goods sector. Because of the shift of labour into non-tradeables, the marginal product of capital in $N$ actually rises when energy prices increase and that sector's capital accumulation increases very slightly. Profitability in $T$, on the other hand, is hard hit, and investment in $T$ is sharply negative. In the steady state, $K_N$ rises by 0.1% while $K_T$ falls by 0.3%.

With temporary real wage rigidity, as shown in Table V, the unemployment rate jumps one percentage point upon impact of the oil shock, falling over time at a rate of about 0.2 percentage points per year. Note that the 1970 real wage stays 0.4% above the full employment level (cf. Table IV). It is easy to show that an excess real wage of 0.4% corresponds roughly to 1% unemployment under the elasticity assumptions of the model.² The unemployment depresses investment, but only slightly, since rational entrepreneurs know that the unemployment (and resulting low profits) are temporary. In 1985, $K_T$ and $K_N$ are a mere one-tenth of one percent lower than in the full employment
TABLE V

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>1985</th>
<th>1990</th>
<th>Steady-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_T$</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.5</td>
</tr>
<tr>
<td>$K_N$</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>$P_T/P_F$</td>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$P_N/P_T$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>$Q_T/L_T$</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>$Q_N/L_N$</td>
<td>0.1</td>
<td>0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>$W/CPI$</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>Unemployment</td>
<td>1.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Rate (percent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All variables except rate of unemployment are measured by their percentage change over base-case values. For this set of simulations, the government pursues a constant-transfer policy.

case. Finally, note that the real wage rigidity worsens the economy’s international competitiveness after the oil shock, with $P_T/P_F$ about 0.4% higher during 1980 than in the full-employment case.

Simulation 3: Evaluating the effects of the North Sea oil sector: The Dutch disease

The present model is well-suited to study the effects of North Sea oil production on resource allocation, though it is not yet calibrated on the demand side. To get a feel for the qualitative effects of the North Sea oil boom, we compare simulations of the economy with and without domestic energy production. The effects of a one-shot move from no production to self-sufficiency are illustrated in Table VI. We assume that energy production immediately, costlessly, and unexpectedly comes on line in 1980, and then follows the declining production profile outlined earlier.

The domestic oil wealth improves the country’s terms of trade $(P_T/P_F)$ by 0.2% initially, and raises the relative price of home to traded goods by 1.1%. There is substantial shift of labour to the non-traded goods sector, and production $Q_N$ rises by 2.7%, while $Q_T$ falls by 1.9%. Average labour productivity in non-traded goods accordingly falls by -0.1% initially. The terms-of-trade improvement also raises real wages by 0.8 percentage points.

TABLE VI

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>1985</th>
<th>1990</th>
<th>Steady-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_T$</td>
<td>0.0</td>
<td>-0.7</td>
<td>-1.1</td>
<td>-1.3</td>
</tr>
<tr>
<td>$K_N$</td>
<td>0.0</td>
<td>1.2</td>
<td>2.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>$P_T/P_F$</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>$P_N/P_T$</td>
<td>1.1</td>
<td>0.8</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>$Q_T/L_T$</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>$Q_N/L_N$</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>$W/CPI$</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>$Q_T$</td>
<td>-1.9</td>
<td>-1.9</td>
<td>-1.8</td>
<td>-1.6</td>
</tr>
<tr>
<td>$Q_N$</td>
<td>2.7</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Note: All variables are measured by their percentage change over base-case values, where in the base case, there is no domestic energy production. These estimates treat the emergence of the energy sector as a one-shot, unanticipated phenomenon in 1980.
The oil discovery prompts a boom in investment in $N$, and a squeeze in investment and profits in $T$. By 1985, $K_N$ rises by 1.2% and $K_T$ falls by 0.7%. Importantly, the continued expansion of the non-traded goods sector and decline of the traded goods sector substantially reverses the relative price increase $P_N/P_T$. In the long run, $P_N/P_T$ falls back to 0.3% above its initial value.

An important point not often stressed in the discussion on the Dutch disease is that optimizing, far-sighted households (and government) will not consume all current oil revenues, but will rather save in anticipation of the future decline in energy production. Thus, much of the current energy revenues should show up in current account surpluses. To the extent that the revenues are saved in the short run, the sectoral reallocation of production is postponed for the future. And to the extent that the current revenues overstate the “perpetuity equivalent” of oil earnings (i.e. to the extent that current production exceeds “permanent production”), a focus on current production levels overstates the resource allocational consequences of the oil sector.

4. CONCLUSIONS AND EXTENSIONS

Our model of a dynamic perfect foresight equilibrium in a multi-sector open economy elaborates earlier findings concerning the Dutch disease. For instance, in the third simulation we see clearly that the net effect of the energy sector is to reduce long-run production of other tradeables, and to improve the economy's terms of trade on final goods. The first simulation demonstrates that the size of this effect depends on government budget policies concerning the redistribution of oil-tax revenues to the private sector.

There are three extensions to this work that seem very fruitful at this point. Most importantly, the model must be more accurately parameterized to depict the behavioural relationships in the U.K. economy. As indicated earlier, this work is now being undertaken at Harvard by Mr. Louis Dicks-Mireaux. Second, a monetary sector and nominal and real price rigidities can be built into the present framework, along the lines of Buitier and Purvis (1982). Important aspects of the U.K. adjustment process in recent years have involved the interaction of monetary and real phenomena. For example, the strong appreciation of the pound sterling in the late 1970s has often been attributed to its role as a “petro-currency”, and this appreciation has had a profound effect on the real economy.

Finally, a one-country model can be usefully embedded in a multi-country context allowing us to endogenize the world rate of interest, foreign prices, and foreign wealth. As pointed out in Sachs (1982), the overall effects of higher oil prices are importantly determined by shifts in these “world” parameters, which have been held fixed in this study.

This paper was presented under the original title “Input Price Shocks and the Slowdown in Economic Growth, Part II”. The paper is part of a joint study of the authors on the macroeconomic effects of supply shocks. We thank Mr. Louis Dicks-Mireaux for very able research assistance, and an anonymous referee for valuable comments. Support from the National Science Foundation is gratefully acknowledged.

NOTES

1. There is a subtle point in determining the country's new budget line after the oil discovery. The discovery induces a capital inflow, and the economy moves down the Rybczynski line from $A$ to $G$. The initial capital stock is $K$, and after the shock the stock is $K + \Delta K$. Initially, $GDP = r^*\pi_L K + wL$; now $GDP = r^*\pi_L (K + \Delta K) + wL + P_T Q_P$. Whether the foreign capital comes in the form of rentals from abroad, or foreign direct investment, or domestic investment financed from abroad, there will be a service income outflow (each period) in the amount $r^*\pi_L \Delta K$. Thus, GNP rises exactly by the value of oil production. The budget line, through $AB$, shifts to $DF$. 
2. As a rough approximation, \( d \log L = -\left[S_L/(1-S_L)\right] \cdot \sigma_{KL} \cdot d \log (W/P_v) \) where \( S_L \) is the share of labour in value added, and \( \sigma_{KL} \) is the elasticity of substitution between \( K \) and \( L \) in value added (see Bruno and Sachs (1982)). With \( S_L = 0.75 \), \( \sigma_{KL} = 0.8 \), we find \( d \log L = -[0.75/0.25] \cdot 0.8 d \log (W/P_v) \), or \( d \log L = 2.4 d \log (W/P_v) \). Thus, with \( W/P_v \) about 0.4% above its equilibrium value, employment is reduced by about 1.0%.

As an empirical matter, it is quite likely that \( \sigma_{KL} = 0.8 \) is too high for a year-to-year calculation. While some authors have assumed Cobb-Douglas technology, our own estimates in Bruno and Sachs (1982) tend to show lower magnitudes (between 0.2 and 0.4). With a lower \( \sigma_{KL} \), the short-run movements in unemployment would be scaled down (approximately in the same proportion as the reduction in \( \sigma_{KL} \) itself).

REFERENCES


